アイテック阪急阪神株式会社 本社
〒553-0001 大阪市福島区海老江1丁目1番31号 阪神野田センタービル
申し込み受付は終了しました
前払い | 19,000円 前払い |
---|---|
前払い・2回目の受講(機械学習・ディープラーニングのための情報理論の再受講) | 3,000円 前払い |
やむを得ずキャンセルされる場合は、開催日の4日前までのご連絡に限り、払い戻し手数料を差し引いた金額を払い戻し致します。以降は払い戻しをできませんのでご注意ください。 |
機械学習の理解に不可欠な数学の知識に関して、初学者でも基礎から実践まで体系化に学べるように、基礎数学シリーズと応用数学シリーズの2シリーズで展開しています。
シリーズ | 分野 | 前提知識 |
---|---|---|
基礎数学シリーズ | 微分、線形代数、確率統計 | 不要 |
応用数学シリーズ | 多変量解析、ベイズ推論のための確率統計アドバンス、最適化、情報理論 | 基礎数学シリーズの指定の講座修了レベル |
基礎数学
日程 | 時間 | 講義名 |
---|---|---|
8/25(土) | 09:00-14:00 | 機械学習・ディープラーニングのための微分基礎 |
8/25(土) | 15:00-20:00 | 機械学習・ディープラーニングのための確率・統計DAY1 |
8/26(日) | 09:00-14:00 | 機械学習・ディープラーニングのための線形代数 |
8/26(日) | 15:00-20:00 | 機械学習・ディープラーニングのための確率・統計DAY2 |
応用数学
日程 | 時間 | 講義名 |
---|---|---|
9/08(土) | 09:00-14:00 | 機械学習・ディープラーニングのための多変量解析 |
9/08(土) | 15:00-20:00 | ベイズ推論のための確率統計アドバンス |
9/09(日) | 09:00-12:30 | 機械学習・ディープラーニングのための情報理論 |
9/09(日) | 13:30-20:00 | 機械学習・ディープラーニングのための最適化 |
AIに関するほとんどの書籍や学習コンテンツは、数式を用いた説明をしており、数学に苦手意識をもつ方にとっては、難解な分野だという雰囲気を醸しています。
しかし、AI自体が数式で知能を表現しようという試みであるとも言えるため、数学を学ばずにAIを理解することはできません。
スキルアップAIの数学講座は、前提知識不要レベルの基礎数学講座から、機械学習を理解するのに直結する応用数学講座まで、豊富なラインナップで講座を展開しています。
今回は、情報理論を扱います。情報理論は確率統計学の応用範囲である「計算機科学」の一分野であり、事象の曖昧さ、不確実さを定式的に扱うための極めて応用的、実用的な内容を多く含みます。
情報理論はあまりメジャーな分野ではありませんので、「本格的な講座」が開講されることがあまり多くありませんが、本講座では、機械学習関連の書籍、また、日本ディープラーニング協会E資格で出題範囲の情報理論の諸概念について、見た瞬間に「なるほど」と思えるレベルの理解を目指します。
自己情報量/相互情報量/エントロピー/KLダイバージェンスなどなど、機械学習の書籍では頻繁にあらわれる概念を、数式から逃げず、かつ、直感的な意味合いも大切にしながら丁寧に解説します。また、練習問題で「手を動かして」数式に習熟することも取り入れ、「根本的な理解」を目指します。
開始の10分前から
・確率論の復習
・対数関数の復習
・自己情報量
・エントロピー
・2値エントロピー関数
・条件付きエントロピー
・相互情報量
・シャノンの基本不等式
・カルバック・ライブラー情報量(KLダイバージェンス)
*若干変更なる場合があります。
・微分、線形代数、確率統計については学んだが、情報理論についての入門書籍、講座が見つからず困っている方
・定義や定理を見ても、何を言っているのかよくわかず、もっと根本的な理解に到達したい方
・情報理論を実務に活かしたい方。
・基礎的な確率論の知識(習熟しているのが望ましいが、最低限の復習の時間も設ける)
・四則演算、Σ記号、関数等の基礎的な数学の知識
・数式を見ても拒絶反応が起こらない気持ち(慣れ)
アイテック阪急阪神株式会社 本社
〒553-0001 大阪市福島区海老江1丁目1番31号 阪神野田センタービル
阪神野田駅、地下鉄千日前線野田阪神駅又はJR東西線海老江駅から徒歩約2分
※ビルへの入り方はこちらをご参照ください。
※ビル正面玄関でスタッフが待機しております。入館時に出席をとらせていただきます。
S Akematsu
東北大学理学部数学科卒業。個人事業を経て、高専向け学習塾「ナレッジスター」の経営などを行う教育特化型企業「合同会社Haikara City」を創業。現在、高専教育、社会人向けIT教育、WEB教育コンテンツの発信等を主に行う。著書 線形空間論入門 。現在は、画像解析システムの研究開発企業に対して、DeepLearningに関する数理コンサルティング、数学指導なども行う。
ご自身のノートPC(必須)
筆記用具
基本的にはこちらでWi-Fi環境を確保したいと考えておりますが、wifiが使えない日がないとも限らないのでwifiは自己責任でお願いいたします。(現在開講中の講座にて会場にWi-Fi環境が無い場合、ご自身のスマートフォンのデザリングなどで対応されております)
なし
【Paypalでお支払いの場合】
PayPal発行の受領書が領収書となります。
受領書ページは、PayPalの支払い完了ページで「印刷用受領書を見る」をクリックすると表示されます。
(当社よりの重複しての領収書発行は行えません)
講座に関するお問い合わせは、info@skillupai.comまでお願いいたします。
kaggleなどの実際のビジネスデータを用いて、最前線で活躍するデータサイエンスのスペシャリストから機械学習を体型的に学べるAIスクールです。 また、ディープラーニング協会(JDLA)認定プログラムとして、ディープラーニングの基礎・原理を理解し、実装レベルでマスターすることをゴールとした日本最高峰レベルの講座も提供しており、E資格を受験するために必要な全ての知識を、最先端で活躍するスペシャ...
メンバーになる